Mechanics of Solids-I Sessional **CE 0732-2206** # **Department of Civil Engineering** # University of Global Village (UGV), Barishal #### **Preface** The Mechanics of Solids Sessional Lab Manual describes the experiments in the Mechanics of Solids Sessional course. Each experiment is explained thoroughly along with related theory and background. The experiments are selected to apply some concepts from strength of materials such as analysis of material properties based on tension, compression, hardness, bending, buckling, direct shear, impact, torsion, behavior of spring etc. This is one of the vital laboratory courses in the curriculum of the Bachelor of Civil Engineering program. Students can learn variety of engineering and structural materials and their mechanical and engineering properties, different testing procedure and testing standards, testing equipment, materials stress-strain behavior and failure patterns, types of materials based on characterization, report writing process and evaluation of the experimental results and so on. In civil engineering profession, the use of structural behavior and understanding the quality of product will be discussed in this course. Some complementary topics are also presented such as using of measuring tools like digital slide calipers. The use of these tools will help the students to understand how to measure objects precisely, which is a crucial skill in lab. Experimental data analysis techniques and graph formation in MS Excel are also discussed to help the students to prepare graphs. The authors are highly indebted to their colleagues for their constant support and guidance during the course of preparing this manual. In addition, concepts were taken solid mechanics books by Singer/Bansal and AUST manual, while the pictures were collected from the internet. ### Rubieyat Bin Ali Assistant Professor & Chairman Department of Civil Engineering University of Global Village (UGV), Barishal # **INDEX** | Chapter | Name of Fieldwork | Page No | |---------|--|---------| | No. | | | | 1 | Concrete Mix Design | 01 | | 2 | Compressive Strength Behavior of M30 Concrete | 08 | | 3 | Determination of Slump Value | 23 | | 4 | Tensile Strength Behavior of Mild (16mm) Steel | 27 | | 5 | Flexural Strength Behavior of Beam | 40 | | 6 | Tensile Splitting Test of Concrete | 43 | | | List of References | 48 | # The ACI Method of Mix Design Example Problem: Data Known: Specified strength = 20 MPa Required Slump = 50 mm Maximum size of aggregate = 20 mm FM of fine aggregate = 2.20 Grading of aggregate as satisfied by by ASTM C33 SSD specific gravity of fine and coarse aggregate = 2.65 Rodded bulk density of coarse aggregate = 1600 kg/cubic m Absorption Capacity of coarse aggregate = 0.5 % Absorption Capacity of fine aggregate = 0.7% Moisture Content of fine and coarse aggregate = Zero Exposure Conditions = Normal | Type of Construction | Range of slump mm | |---|-------------------| | Reinforced foundation walls and footings | 20-80 | | Plain footing, cassions and substructure wall | 20-80 | | Beams and Reinforced Wall | 20-100 | | Building Column | 20-100 | | Pavement and Slabs | 20-80 | | Mass Concrete | 20-80 | - Decide maximum size of aggregate to be used. Generally, for RCC work 20 mm and for pre-stressed concrete 10 mm size are used. - specific gravity, is the ratio of the density of a substance to the density of a given reference material. | Type of soil | Specific gravity | |------------------------|------------------| | Sand | 2.65-2.67 | | Silty sand | 2.67-2.70 | | Inorganic clay | 2.70-2.80 | | Soil with mica or iron | 2.75-3.00 | | Organic soil | 1.00-2.60 | # SOLUTION: # Step 1: Specified Strength. The first step is the determination of specific strength In this case the specified strength is given as 20 MPa Step 2: Target Strength. where, fc = Characteristic/Specified Strength of concrete. fcr = Target strength of concrete. Note: Specified Strength is the result of the actual compression testing done of properly prepared, cured and tested samples. Whereas, Target strength implies what it was supposed to be, according to its designers. If previous statistical data is not given then, the required average strength is determined according to the ACI code as follows: fcr $$\geq$$ fc + 7.0 MPa for fc \leq 21 MPa fcr \geq fc + 8.5 MPa for fc = 21 to 35 MPa fcr \geq 1.1fc + 5.0 MPa for fc > 35 MPa # Step 3: Water/Cement Ratio. Water/Cement ratio of the concrete mix will depend upon the target strength of concrete mix. The following table show the relationship between the two by proposed by ACI Code. | Average Compressive strength at 28 days | Effective water/cement ratio by mass
for Non-Air Entrained Concrete | |---|--| | (MPa) | | | 45 | 0.38 | | 40 | 0.43 | | 35 | 0.48 | | <u>30</u> | 0.55 | | <u>25</u> | 0.62 | | 20 | 0.70 | | 15 | 0.80 | As in our case the target strength is 27 MPa for which the required water/cement ratio is not given so we will find the required value using interpolation. | Strength | W/C ratio | |----------|-----------| | 30 MPa | 0.55 | | 27 MPa | ? | | 25 MPa | 0.62 | W/C ratio = 0.55 + (0.62-0.55) / (30-25) = 0.59 Step 4: Water Content. The water content of cement depends upon the slump value and the maximum aggregate size. The following table shows the relationship between them as proposed by the ACI code. | Workability
(Slump) | Water Content of Concrete for Maximum Aggregate Size (mm) for
Non-Air Entrained Concrete | | | | | | |---|---|------|-----|-----|-----|--| | | 10 | 12.5 | 20 | 25 | 40 | | | 30 - 50 | 205 | 200 | 185 | 180 | 160 | | | 80 - 100 | 225 | 215 | 200 | 195 | 175 | | | 150 - 180 | 240 | 230 | 210 | 205 | 185 | | | Approximate Entrapped Air Content Percent | 3 | 2.5 | 2.0 | 1.5 | 1.0 | | | Recommended Avg. Air Content percent for | 4.5 | 40 | 2.5 | 2.0 | 2.5 | | | Mild Exposure | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | | | Moderate Exposure | 6.0 | 5.5 | 5.0 | 4.5 | 4.5 | | | Extreme Exposure | 7.5 | 7.0 | 6.0 | 6.0 | 5.5 | | So as in our case the mixing water content for non-air entrained concrete with a slump of 50 mm and maximum aggregate of 20 mm is **185 kg/cubic m** (from table) # Step 5: The approximate entrapped air content is 2%. ### Step 6: Cement Content: Cement content can be calculated by the ratio between water content to W/C ratio. > Cement Content = Water Content / W/C Ratio = 185/0.59 = 314 kg/cubic meter # Step 7: Mass of Coarse Aggregate. It depends upon maximum size of aggregate and fineness modulus of fine aggregate. The following table shows the relation as proposed by ACI. | Maximum
Size of | Dry | | me of Roo
oncrete fo | | | - | | ne of | |--------------------|------|------|-------------------------|------|------|------|------|-------| | Aggregate | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 | 2.6 | 2.8 | 3.0 | | 10 | 0.56 | 0.55 | 0.54 | 0.52 | 0.50 | 0.48 | 0.46 | 0.44 | | 12.5 | 0.65 | 0.64 | 0.63 | 0.61 | 0.59 | 0.57 | 0.55 | 0.55 | | 20 | 0.72 | 0.71 | 0.70 | 0.68 | 0.66 | 0.64 | 0.62 | 0.60 | | 25 | 0.77 | 0.76 | 0.73 | 0.73 | 0.71 | 0.69 | 0.67 | 0.65 | | 40 | 0.81 | 0.80 | 0.79 | 0.77 | 0.75 | 0.73 | 0.71 | 0.69 | | 50 | 0.84 | 0.83 | 0.82 | 0.80 | 0.78 | 0.76 | 0.74 | 0.72 | | 70 | 0.86 | 0.85 | 0.85 | 0.84 | 0.82 | 0.80 | 0.78 | 0.76 | | 150 | 0.91 | 0.90 | 0.89 | 0.88 | 0.87 | 0.85 | 0.86 | 0.81 | In this case as maximum size of aggregate is 20 mm and fineness modulus of fine aggregate is 2.20 So dry bulk volume of the aggregate per unit volume of concrete = 0.68. Volume of SSD coarse aggregate required = 0.68 cubic m/cubic m of concrete Mass of coarse aggregate = 0.68 * 1600 (Rodded bulk density of Coarse aggregate) Mass of coarse aggregate = 1088 kg/cubic m # Step 8: Mass of fine aggregate. Specific gravity of fine aggregate = Yf = 2.65 Water content = W = 185 kg/cubic m Cement content = C = 314 kg/cubic m Specific gravity of cement = Y = 3.15 Mass of coarse aggregate = Ac = 1088 kg/cubic m Specific gravity of coarse aggregate = Yc = 2.65 Air content = 2 % Mass of fine aggregate = Yf [1000-(W+C/Y+Ac/Yc+10A)] = 2.65 [1000- (185 + 314/3.15 + 1088/2.65 + 20)] = 755 kg/cubic m # Step 9: Extra water required for absorption of Aggregate = 0.005 * 1088 (Ac) + 0.007 * 755 (Af) = 10.73 kg/cubic m Total water content = 185 + 10.73 = 196 kg/cubic m #### Note: If excess water is present in the aggregate the required water is to be reduced accordingly. # Step 10: The quantities of the mix of 1.0 cubic m are as under: Cement : 314 kg/cubic m Fine aggregate : 755 kg/cubic m Coarse Aggregate : 1088 kg/cubic m Water : 196 kg/cubic m # The mix ratio is as follows: Cement : Fine Aggregate : Coarse Aggregate = 314 : 755 : 1088 = 1:2.40:3.46 Aggregate / Cement ratio = 5.87 W/C ratio = 0.59 # **Lab Report – Concrete Compressive Strength Test** #### 1.0 Introduction The Concrete Cube Crushing Test is determined the Compressive Strength of hardening concrete. Via this test determined the specification of concrete fulfills required. Compressive Strength means the ability of the structure to carry the loads on its surface without any deflections or cracks. In here, under compression, the size of the structure is reduced. **❖** The Formula of Compressive Strength of Hardening Concrete $$Compressive Strength = \frac{Maximum Load}{Cross - Sectional Area}$$ After removing cubes the age of 3, 7, 14, 21 and 28 days in curing bath, the cube test can be done for the harden concrete cubes. Day by day, the compressive strength of concrete increased. Therefore, The compressive strength of concrete increases according to age. The 28 days concrete strength considered as the standard day for most of the
concrete works. The temperature and moisture affect the increment rate of the concrete strength in the hardening process. The Grade 30 (M30) concrete mix is used in the Cube Test. Followings are the factors affecting the compressive strength of concrete. - ➤ Water-Cement ratio - Cement Strength - Quality of concrete materials - Quality control during production of concrete # 2.0 Apparatus & Materials ## > Apparatus Figure 1 - Concrete Cube Test kit set (Anon., n.d.) ### 1. Compression Testing Machine **Figure 2 - Compression Testing Machine (Anon., n.d.)** ➤ The Compression Strength Machine is used to test the Compressive Strength of hardening concrete. #### 2. Steel Cube Mold Figure 3 - Steel Cube Molds (Anon., n.d.) Figure 4 - Measurements of a Cube Mold (Anon., n.d.) The Steel Cube Molds is used to place the fresh concrete for the hardening process. #### 3. Steel Rod - The Steel Rod is used to compact each concrete layer to remove the air voids and subsequent layers penetrate into the underlying layer. - ➤ Height of Steel Rod 60 cm - ➤ Length of Steel Rod 25 mm #### ➤ Width of Steel Rod – 25 mm Figure 5 - Steel Rod (Anon., n.d.) #### 4. Hand Float Figure 6 - Hand Float (Anon., n.d.) ➤ Hand Float is used to level (plate) the surface in the over concrete layer. #### > Materials #### 1. Cement, Sand, Aggregates & Water Figure 7 - Materials of Concrete mix (Anon., n.d.) | Materials | Cement (kg) | Fine Aggregate (kg) | Coarse Aggregate (kg) | Water
(kg or liters) | |------------|-------------|---------------------|-----------------------|-------------------------| | Quantities | 3.465 | 1.87 | 6.105 | 15.62 | Table 1 - Quantities of using materials of concrete mix ➤ Mix ratio of Cement : Fine Aggregate : Coarse Aggregate = 1 : 2 : 4 #### 2. Grease Figure 8 - Grease (Anon., n.d.) > Grease oil is used to prevent the concrete from sticking to the cube mold. #### 3.0 Procedure - 1. The mold that was used in the cube test must be cleaned internally using the wire brush. Because remove any residual particles from previous concrete tests. - 2. The interior surface of the assembled mold was required to be thinly coated with grease oil to prevent adhesion of concrete. - 3. The mixed concrete was poured with a certain mix proportion into the mold in 3 layers and each layer was must be tamped 35 times using the compacting steel rod. The mold was filled up until overflow and leveled the surface using the hand float. Figure 9 - How the group members were filled the cubes and compacted each layer 35 times using the steel rod - 4. The concrete mixture cube was left for 24 hours setting. - 5. The above steps were should be repeated for another 2 more cubes with the same mix proportion. - The date of the mixture was recorded for every cube and all 3 cubes were submerged in the curing tank at the temperature of 18 degrees Celsius – 20 degrees Celsius. Tested on the 7th day. 7. After the 7th day, When the cube was fully matured it should be weighted and recorded. Figure 10 - A harden concrete cube looks like after 7 days | Cube No. | Cube Weight (kg) | |----------|------------------| | 1 | 8.28 | | 2 | 8.58 | | 3 | 9.11 | Table 2 - Record measurements of cube weight were taken from the Cube Test 8. The cube was placed to be tested at the center plate of the compression machine. Both plates were in contact with the lower surface of the concrete plate and it was ensured by them. The load value was released to raise up the bottom plate until the cube touches the above plate. The maximum load that would crush the tested cube was recorded. Figure 11 - The cube was placed at the center plate of the compression machine for testing 9. The above steps were repeated using the other cubes. Accordingly, the result was recorded by him. | Cube No. | Maximum Load
(Peak value) | | |----------|------------------------------|--| | 1 | 332.00 | | | 2 | 350.28 | | | 3 | 396.47 | | Table 3 - Record measurements of maximum load to bear each cube were taken from the Cube Test Figure 12 - After the cube test, how all 3 cubes were shown #### 4.0 Results Table 4 - Calculation the Average of Cube Weight and Average of Compression Strength | Cube
No. | Date of
Cube made | Date of
Testing | Age
during
testing | Cube
Weight
(kg) | Compression Strength (MPa) | |-------------|----------------------|--------------------|--------------------------|------------------------|----------------------------| | 1 | 22/07/2019 | 31/07/2019 | 7 days | 8.28 | 14.75 | | 2 | 22/07/2019 | 31/07/2019 | 7 days | 8.58 | 15.56 | | 3 | 22/07/2019 | 31/07/2019 | 7 days | 9.11 | 17.62 | | | Ave | 8.65 | 15.97 | | | #### **Calculations:** > Average of Cube Weight = $$\frac{(8.28 + 8.58 + 9.11)\text{kg}}{3}$$ = 8.65 kg ➤ Percentage of Compressive Strength in 7 days = 65% The Grade 30 (M30) concrete mix is used in the Cube Test. It means the Compressive Strength of 30N/mm² in 28 days. Thus, Compressive Strength for Grade 30 (M30) concrete after 7 days = $$30 \text{Nmm}^{-2} \times \frac{65}{100}$$ = $\underline{19.5 \text{ Nmm}^{-2}}$ ➤ Size of Cube = 150mm x 150mm x 150mm **Area of Concrete Cube = 150mm x 150mm** $$= 22 500 \text{mm}^2$$ - ightharpoonup Compressive Strength = $\frac{\text{Maximum Load}}{\text{Cross-Sectional Area}}$ - > Compressive Strength of Cube 1 = $\frac{332.00 \times 1000 \text{ kN}}{22 \times 500 \text{ mm}^2}$ = 14.75 MPa - > Compressive Strength of Cube 1 = $\frac{350.28 \times 1000 \text{ kN}}{22 \text{ } 500 \text{ mm}^2}$ = 15.56 MPa - > Compressive Strength of Cube 1 = $\frac{396.47 \times 1000 \text{ kN}}{22500 \text{ mm}^2}$ = $\frac{17.62 \text{ MPa}}{1000 \text{ kN}}$ Average of Compressive Strength in Concrete Cubes = $\frac{(14.75+15.56+17.62)MPa}{3}$ = 15.97 MPa > Standard Deviation = $$\sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}$$ = $\sqrt{\frac{(14.75-15.97)^2+(15.56-15.97)^2+(17.62-15.97)^2}{3-1}}$ = $\sqrt{\frac{(-1.22)^2+(-0.41)^2+(1.65)^2}{2}}$ = $\sqrt{\frac{1.4884+0.1681+2.7225}{2}}$ = $\sqrt{\frac{4.379}{2}}$ = 1.4796 MPa = 1.48 MPa #### 5.0 Discussion #### 1. Why the inner surface of the mold shall be coated with the grease oil? The inner surface of the mold shall be coated with the grease oil because to prevent leakage during filling the concrete and to prevent the concrete from sticking to it, otherwise, the hardening concrete cube won't release from the mold. # 2. How can the value of standard deviation describe the strength and quality of the concrete? Standard Deviation indicates the deviation of a set of variables from the mean value. The less the standard deviation value is, the more values are close together and indicates more consistency results. It is a measure of how the strength behavior of the concrete is changing. That when the cubes are tested compressive strength the range of minimum and maximum value determine the SD. Its value increases along with the strength of cement required, as much more accuracy is required for making high strength grade mixture. SD will be less if the quality at the materials of a concrete mixture is better and if the quality is poor, the SD will be high. Thus, Standard Deviation inversely proportional to the Quality of concrete. It is best if our compressive strength value is a bit less than our minimum range of strength. According to our cube test results, our SD value is 1.48. Thus, it is a very low value. Therefore, the strength and quality of our concrete are very high. #### 3. Describe how the strength can be affected with the variation of water cement ratio? The ratio of the amount of water to the amount of cement by weight is known as the "water-cement ratio". The strength of concrete depends on this ratio. In a hardened concrete, strength is inversely proportional to the water/cement ratio. The quantity of water added to the cement while preparing concrete mixes has been known to exert tremendous influence on the quality of concrete. Water affects the durability and strength of concrete. The relation between the water-cement ratio and the strength of concrete in 28 days is shown in the below figure. Compressive strength is high when the water-cement ratio is low. The lower water-cement ratio could be used when the concrete is vibrated to achieve higher strength. The lower water-cement ratio means less water, or more cement and lower workability. Figure 13 - Water-Cement ratio versus Strength #### ✓ When the water-cement ratio is high • If the W / c ratio is high, a large quantity of water can be obtained per unit weight of cement in the concrete mix. Then some water will still be left when the concrete hardens and is ready for use. This trapped water was evaporated, leaving some air voids in the concrete block. The presence of voids results in reduced strength. #### ✓ When the water-cement ratio is low • In this case, there will be very less amount of water in the block of formwork when the concrete is poured into it, and hence lesser voids. Therefore, low water and cement ratio can cause serious problems in hard concrete. Thus, the water-cement ratio is the most important factor in the concrete. #### 6.0 Conclusion - ➤ In the Cube Test is determined the Compressive Strength of hardening concrete. - The apparatus of the cube molds, steel rod, hand float, and compression testing machine (CTM) are used for doing the cube test. - ➤ The ratio of cement, fine aggregate, coarse aggregate and water to 1: 2: 4: ½ were used to prepare the concrete mixture. - ➤ The Grade 30 (M30) concrete mix is used in the Cube Test. - After removing cubes the age of 3, 7, 14, 21 and 28 days in curing bath, the cube test can be done for the harden concrete cubes. - After 28 days, the compressive strength of hardening concrete is very high. - We were done our cube test after 7 days. - According to our results, we were done our cube practical test in very successfully. - ➤ But some of the factors such as the first time we added water, we got a dry mix and after we added water, then the concrete
mix is too wet, the top surface was absorbed some water from the concrete mix, the cement is spread through the air because of the wind and when mixing the material of concrete mix, they were spread everywhere and some of the cubes are loose, therefore that cubes can't be fixed properly were affected our cube test results. - ➤ However, our cube practical test was a success and we got the idea such as how to do the cube test, the situation of freshly mixed concrete and how to do the practicals in the practical lab with safety, how to use the material of concrete, how to prepare the good concrete mix are some of them. Table 5 - The Compressive Strength of concrete at different Ages (Anon., 2014) | Age | Percentage of Compressive Strength | |-------|------------------------------------| | 1 day | 16% | | 3 day | 40% | | 7 day | 65% | | 14 day | 90% | |--------|-----| | 28 day | 99% | Table 6 - Compressive Strength of Different Grades of Concrete at 7 and 28 Days (Anon., 2014) | Grade of Concrete | Minimum compressive strength N/mm ² at 7 days | Specified characteristic compressive strength (N/mm²) at 28 days | |-------------------|--|--| | M15 | 10 | 15 | | M20 | 13.5 | 20 | | M25 | 17 | 25 | | M30 | 20 | 30 | | M35 | 23.5 | 35 | | M40 | 27 | 40 | | M45 | 30 | 45 | - Finally, I would like to thank our guide Ms. Eeshani Perera in our practical tests to give your knowledge clearly to us. - And also, I think these practical tests benefit a lot on my subject and for my future as it prepares me to overcome many upcoming problems. Overall, it was a great experience for me. # Laboratory - Concrete Technology ## **Tests on Fresh Concrete:** # **Slump Test** #### **Objective** To determine the relative consistency of freshly mixed concrete. **Standards**: ASTM C 143 and BS 1881 : 103 #### **Principles** - ➤ Slump test is the most commonly used method of measuring consistency of concrete which can be employed either in laboratory or at site of work. - ➤ It is not a suitable method for very wet or very dry concrete. - ➤ It does not measure all factors contributing to workability, nor is it always representative of the placability of the concrete. - ➤ The slump test is used to ensure uniformity for different batches of similar concrete under field conditions and to ascertain the effects of plasticizers on their introduction. - This test is very useful on site as a check on the day-to-day or hour- to-hour variation in the materials being fed into the mixer. An increase in slump may mean, for instance, that the moisture content of aggregate has unexpectedly increases. - ➤ Other cause would be a change in the grading of the aggregate, such as a deficiency of sand. - > Too high or too low a slump gives immediate warning and enables the mixer operator to remedy the situation. #### Apparatus: - Slump cone (Figure 1): metal cone with form with the base 200mm diameter and 300mm height with the top diameter 100mm. the top and base of cylindrical mould is open and parallel to each other. The mould is provided with foot pieces and handles. - Temping rod (steel) with dimensions of 16mm diameter and 600 mm length. - Balance. # Laboratory - Concrete Technology Figure (1) #### **Materials** Fresh concrete mix (cement, sand, gravel and water) #### Test Procedure #### Figure (2) illustrates the steps for slump test: - 1. The base is placed on a smooth surface and the container is filled with concrete in three layers, whose workability is to be tested. - **2.** Each layer is temped 25 times with a standard 16 mm diameter steel rod, rounded at the end. - 3. When the mold is completely filled with concrete, the top surface is struck off (leveled with mold top opening) by means of screening and rolling motion of the temping rod. - 4. The mold must be firmly held against its base during the entire operation so that it could not move due to the pouring of concrete and this can be done by means of handles or foot rests brazed to the mold. - 5. Immediately after filling is completed and the concrete is leveled, the cone is slowly and carefully lifted vertically (Figure 3), an unsupported concrete will now slump. - **6.** The decrease in the height of the center of the slumped concrete is called slump (Figure 3-step6). - 7. The slump is measured by placing the cone just besides the slump concrete and the temping rod is placed over the cone so that it should also come over the area of slumped concrete. - **8.** The decrease in height of concrete to that of mould is noted with scale. (usually measured to the nearest 5 mm. Figure (2) Figure (3) # Types of Slump: The <u>concrete slump</u> can be classified according to the nature of concrete fall. There are 3 types of the slump (Figure 4). These are: - 1. True slump: In a true slump concrete just subsides shortly and more or less maintain the mould shape. This type of slump is most desirable. - 2. Shear slump: If one-half of the cone slides down in an inclined plane, it is called a shear slump. Shear slump indicates lack of cohesion in the concrete mix. Shear slump may occur in the case of a harsh mix. - 3. Collapse slump: In this case, fresh concrete collapses completely. # Laboratory - Concrete Technology Figure (4) Note: Description of workability & magnitude of slump is shown in the table below: | Description of workability | Slump | | |----------------------------|-----------------|--| | | mm | | | No slump | 0 | | | Very low | 5-10 | | | Low | 15-30 | | | Medium | 35-75 | | | High | 80-155 | | | Very high | 160 to collapse | | # **EXPERIMENT NO.: 4** # TENSION TEST OF MILD STEEL SPECIMEN # **Experiment No.: 4 Tension test of Mild Steel Specimen** #### 1. OBJECTIVE - -To determine the mechanical properties of steel specimen. - -To perform the tensile test of mild steel. - -To observe the tensile strength of different steel grades. - -To study the failure pattern of different steel grades. - -To compare the performances different steel grades. #### 2. ASTM REFERENCE ASTM E 8 Standard Test Methods for Tension Testing of Metallic Materials #### 3. SIGNIFICANCE This experiment provides fundamental knowledge on tension behaviour of materials specially mild steel, test procedure, universal testing machine and its working principal, tension specimens, failure patterns etc. #### 4. APPARATUS AND MACHINE UTM, stop watch, digital slide calipers and computer. #### 5. SPECIMEN Mild steel specimens (40, 60, and 72.5 grades) of 25mm diameter. #### 6. THEORY Elasticity & Plasticity: When external forces are applied on a body, made of engineering materials, the external forces tend to deform the body while the molecular forces acting between the molecules offer resistance against deformation or displacement of the particles continues till full resistance to the external forces is setup. If the forces are now gradually diminished, the body will return, wholly or partly to its original shape. Elasticity is the property by virtue of which a material deformed under the load is enabled to return to its original dimension when the load is removed. If a body regains completely its original shape, it is said to perfectly elastic. Plasticity is the converse of elasticity. A material in plastic state is permanently deformed by the application of load, and it has no tendency to recover. Every elastic material possesses the property of plasticity. Under the action of large forces, most engineering materials become plastic and behave in a manner similar to a viscous liquid. The characteristic of the material by which it undergoes inelastic strains beyond those at the elastic limit is known as plasticity. When large deformations occur in a ductile material loaded in the plastic region, the material is aid to undergo plastic flow. Figure 1: Stress-strain diagram of Mild Steel in tension **Proportional Limit (Point A):** It is the limiting value of the stress upto which stress is proportional to strain. **Elastic Limit (Point B):** This is the limiting value of stress upto which if the material is stressed and then released (unloaded), strain disappears completely the original length is regained. Its determination, experimentally, is extremely difficult, and therefore its exact location on the stress-strain diagram is usually not known, even though it is generally higher than the proportional limit. **Permanent set/permanent deformation:** If the load exceeds the elastic limit before it is removed, the material does not fully regain its initial dimensions. In such a case the material is said to experience a permanent deformation. **Elastic Recovery:** The recovered deformation after removal of load. **Yield stress (Point C and D):** Soon after the stress the elastic limit, low carbon steel attains it yield point stress. The yield point of a material is defined as that unit stress that will cause an increase in deformation without an increase in load. Upon the arrival of yield point, a ductile material such as low carbon steel stretches an almost unbelievable amount, frequently 10% of the original length. When the yield stress is reached elongation takes place more rapidly as plastic flow takes place over and atoms move into new positions and a return to the original shape of the test piece is impossible. **Upper Yield Point (Point C):** This is the stress at which the load starts reducing and the extension. Lower Yield Point (Point D): At this stage the stress remains same but strain increases for some time. The upper yield point is influenced considerably by the shape of the test specimen, speed of testing, accuracy of alignment, the condition of the test piece (especially the presence of residual stresses in a test on the full cross section) and by the testing machines itself and is sometimes completely suppressed. The lower yield points much less sensitive and is considered to be more representative. Yield
Strength by Offset Method: For materials having a stress-strain diagram such as shown in figure (those that do not exhibit a well-defined yield point) a value of stress, known as the yield strength for the material, is defined as one producing a certain amount of permanent strain. Ultimate Strength/Tensile Strength (Point E): This is the maximum stress the material can resist. The ultimate strength represents the ordinate to the highest point in the stress-strain diagram and is equal to the maximum load carried by the specimen divided by the original cross-sectional area. Breaking Strength/Fracture Strength/Rupture Strength (Point F): The stress at which finally the specimen fails is called breaking point. It is the engineering stress at which specimen fracture and complete separation of the specimen parts occurs. **Strain Hardening/Work Hardening:** If a ductile material can be stressed considerable beyond the yield point without failure, it is said to strain harden (When a material deformed plasticity, it work hardens, that is, the stress has to be increased to give further deformation). **Necking:** After reducing the maximum stress, a localized reduction in area, called necking, begins, and elongation continues with diminishing load until the specimen breaks. Modulus of Rigidity (G): It is defined as the ratio of shearing stress to shearing strain within elastic limit. **Modulus of Resilience:** The work done on a unit volume of material, as a simple tensile force is gradually increased from zero to such a value that the proportional limit of the material is reached, is defined as the modulus of resilience. **Modulus of Rupture**/ **Modulus of Toughness:** The work done on a unit volume of material as a simple tensile force is gradually increased from zero to the value causing rupture is defined as the modulus of toughness. Various machine and structure components are subjected to tensile loading in numerous applications. For safe design of these components, their ultimate tensile strength and ductilityto be determined before actual use. A material when subjected to a tensile load resists the applied load by developing internal resisting force. These resistances come due to atomic bonding between atoms of the material. The resisting force for unit normal cross-section area is known as stress. The value of stress in material goes on increasing with an increase in applied tensile load, but it has a certain maximum (finite) limit too. The minimum stress, at which a material fails, is called ultimate tensile strength. The end of elastic limit is indicated by the yield point (load). This can be seen during experiment as explained later in procedure with increase in loading beyond elastic limit, initial cross-section area (A_i) goes on decreasing and finally reduces to its minimum value when the specimen breaks. Some typical mechanical properties of mild steel are as follows: Proportional Limit, $\sigma_p = 30 \sim 65$ ksi (larger for stronger specimens) Yield Strength, $\sigma_v = 35 \sim 75$ ksi (larger for stronger specimens) Ultimate Strength, $\sigma_{\text{ult}} = 60 \sim 100 \text{ ksi (larger for stronger specimens)}$ Modulus of Elasticity, E = 29000~30000 ksi (almost uniform for all types of specimens) Poisson's Ratio, $v = 0.20 \sim 0.30$ ksi (larger for stronger specimens) Modulus of Resilience = $0.02 \sim 0.07$ ksi (larger for stronger specimens) Modulus of Toughness = $7 \sim 15$ ksi (smaller for stronger specimens) Ductility = $10 \sim 35\%$ (smaller for stronger specimens) Reduction of Area = $20\sim60\%$ (smaller for stronger specimens) Figure 2: Typical stress-strain curve of Mild Steel in Tension done in the lab. Figure 3: Specimen condition in the stress-strain curve of Mild Steel in Tension. #### 7. FAILURE PATTERNS Cup-cone fracture (necking found, i.e. Ductile) Incomplete Cup-cone fracture (necking found, i.e. Ductile) Incomplete Cup-cone fracture (necking found, i.e. Ductile) Figure 4: Different ductile and brittle failure patterns of mild steel specimen. Figure 5: Comparative stress-strain diagram of different metals and alloys Figure 6: Mechanism of necking # Typical tension test result from BUET | | | | LENSION IEST OF DEPORMED MISS. BARS | o | | | | | | | | | DRIC NO.: 1100-722020-14-13; DL 13/10/2014 | | | | |----------|---|---------------------|-------------------------------------|------------------------|------------|------------------|------------|-----------------|------------|------------|-----------------|----------------------|--|--------------|--|--------------| | Sent by: | Sent by: Col. Towficur Rahman(Rtd), Sr. General Manager(Marketing& Sales), Ratanpur Steel Re-rolling Mills Ltd.,
Nahar Mansion, 116 CDA Avenue, Muradpur, Chittagong | hman(Rtd
116 CDA | I), Sr. Ge
Avenue, | eneral Mar
Muradpur | nager(Ma | irketing&
ong | Sales), R | atanpur Steel F | Re-rolling | Mills Ltd. | | Ref.: RSI
Date of | Ref.: RSRM/BUET (BRTC)/4
Date of Test: 16/10/2014 | TC)/400W8 | Ref.: RSRM/BUET (BRTC)/400W/&500W-8/14; Dt. 15/10/2014
Date of Test: 16/10/2014 | . 15/10/2014 | | Project: | Test of deformed MS bars for RSRM | MS bars | for RSR | M | | | | | | | | Contractor: | .or: - | | | | | SI. | Frog | Nominal | Actual | Actual | Average | Yield or | Yield or | Average | Ultimate | Ultimate | Average | TS/YS | Elongation | Average | Bend | Rebend | | Ň | Mark | Dia | Dia | ž. | Actual | Proof | Proof | Yield or Proof | Load | Strength * | Ultimate | | (%) | Elongation | Test | Test | | | | | | Weight | ri
Cuit | Peol | Strength * | Strength | | | Strength | | (Gauge | <u>%</u> | | | | | | | | | Weight | | | (YS) | | | (TS) | | length = | (G. length = | | | | | | mm | mm | kg/m | kg/m | kN | MPa | MPa | Ν× | MPa | MPa | | 203.2 mm) | 203.2 mm) | (ISO 6935) | (ISO 6935) | | - | RSRM.G60.400W | 25 | 24.8 | 3.795 | | 225 | 458 | 469 | 368 | 750 | 725 | | 19 | | Satisfactory | | | 2 | RSRM.G60.400W | 25 | 24.9 | 3.809 | 3.810 | 226 | 460 | (68000 psi) | 339 | 690 | (105000 psi) | 1.54 | 20 | 50 | Satisfactory | | | က | RSRM.G60.400W | 25 | 24.9 | 3.825 | | 240 | 489 | (4780 kg/sq.cm) | 363 | 740 | (7390 kg/sq.cm) | | 20 | | Satisfactory. | | | 4 | RSRM.G60.400W | 20 | 19.9 | 2.441 | | 140 | 446 | 452 | 216 | 069 | 200 | | 19 | | Satisfactory | | | 9 | RSRM.G60.400W | 20 | 19.9 | 2.435 | 2.440 | 144 | 459 | (65500 psi) | 227 | 725 | (102000 psi) | 1.55 | 16 | 1 | Satisfactory | | | 9 | RSRM.G80.400W | 20 | 19.9 | 2.445 | | 142 | 452 | (4610 kg/sq.cm) | 217 | 069 | (7150 kg/8q.cm) | | 17 | | Satisfactory | | | 7 | RSRM.G60.400W | 16 | 15.9 | 1.560 | | 86.4 | 430 | 425 | 136 | 680 | 029 | | 19 | | Satisfactory | | | œ | RSRM.G60.400W | 16 | 15.9 | 1.558 | 1.558 | 86.4 | 430 | (61500 psi) | 134 | 670 | (97500 psi) | 1.58 | 19 | 19 | Satisfactory | | | 6 | RSRM.G60.400W | 16 | 15.9 | 1.557 | | 83.3 | 415 | (4335 kg/sq.cm) | 134 | 670 | (6850 kg/sq.cm) | | 19 | | Satisfactory | | | 10 | RSRM.G60.400W | 12 | 12.0 | 0.883 | | 48 | 425 | 425 | 7.1 | 625 | 625 | | 9 | | Satisfactory | | | 1 | RSRM.G60.400W | 12 | 12.0 | 0.884 | 0.884 | 46.9 | 425 | (61500 psi) | 7.1 | 625 | (91000 psi) | 1.48 | 8 | 9 | Satisfactory | | | 12 | RSRM.G80.400W | 12 | 12.0 | 0.884 | | 48.6 | 430 | (4335 kg/sq.cm) | 71 | 625 | (6400 kg/sq.cm) | | 19 | | Satisfactory | | | 13 | RSRM.G60.400W | 10 | 10.0 | 0.621 | | 36.7 | 465 | 465 | 99 | 700 | 700 | | 15 | | Satisfactory | | | 4 | RSRM.G60.400W | 9 | 10.0 | 0.622 | 0.624 | 37.2 | 471 | (67500 psi) | 99 | 705 | (102000 psi) | 1.51 | 15 | 15 | Satisfactory | | | 15 | RSRM.G60.400W | 10 | 10.1 | 0.628 | | 36.3 | 459 | (4740 kg/sq.cm) | 55 | 695 | (7150 kg/sq.cm) | | 16 | | Satisfactory | | # 8. PROCEDURE - i) Measure the diameter of the specimen by slide calipers. Record gage length. - ii) Fix the specimen in proper position and apply the load - iii) Record the maximum load and apply load till the breakage. - iv) Remove the broken specimen and measure the smallest cross-sectional area and the final length between the gage marks by fitting the two ends of the broken pieces together. - v) Note the characteristics of the fractured surface. # 9. SAMPLE CALCULATIONS Strain rate = Initial length of specimen, h_i = Final length of specimen, h_f = Initial diameter of specimen, $d_{i=}$ Final diameter of specimen, $d_{f=}$ Initial cross-section area, A_i = Final cross-section area, A_f = - 1. Draw stress-strain curve in tension. - 2. Determine Modulus of Elasticity, $$E = \frac{\Delta Stress}{\Delta Strain}$$ and Modulus of Resilience in tension - 3. Determine ultimate (max.) tensile strength from graph - 4. Determine yield stress from graph - 5. Determine percentage elongation in length (or height) of the specimen % Elongation of length = $$\frac{l_f - l_i}{l_i} \times 100\%$$ - 6. Determine EMF (elongation at maximum force) from graph - 7. Also determine proportional limit (σ_p) , elastic limit (σ_E) , yield point (σ_y) , ultimate load (σ_u) , breaking strength (σ_b) , etc. # 10. DATA TABLE | Deformati | on rate= | mm/mi | n, Grade | = | ksi, Bran | nd= | | |-----------|----------|----------|----------|----------|-----------|----------|----------| | Time (s) | Load (N) | | 0 | | 470 | | 560 | | 740 | | | 10 | | 480 | | 570 | | 750 | | | 20 | | 490 | | 580 | | 760 | | | 30 | | 500 | | 590 | | 770 | | | 40 | | 510 | | 600 | | 780 | | | 50 | | 520 | | 610 | | 790 | | | 60 | | 530 | | 620 | | 800 | | | 70 | | 540 | | 630 | | 810 | | | 80 | | 550 | | 640 | | 820 | | | 90 | | 560 | | 650 | | 830 | | | 100 | | 570 | | 660 | | 840 | | | 110 | | 580 | | 670 | | 850 | | | 120 | | 590 | | 680 | | 860 | | | 130 | | 600 | | 690 | |
870 | | | 140 | | 610 | | 700 | | 880 | | | 150 | | 620 | | 710 | | 890 | | | 160 | | 630 | | 720 | | 900 | | | 170 | | 640 | | 730 | | 910 | | | 180 | | 650 | | 740 | | 920 | | | 190 | | 660 | | 750 | | 930 | | | 200 | | 670 | | 760 | | 940 | | | 210 | | 680 | | 770 | | 950 | | | 220 | | 690 | | 780 | | 960 | | | 230 | | 700 | | 790 | | 970 | | | 240 | | 710 | | 800 | | 980 | | | 250 | | 720 | | 810 | | 990 | | | 260 | | 730 | | 820 | | 740 | | | 270 | | 740 | | 830 | | 750 | | | 280 | | 750 | | 840 | | 760 | | | 290 | | 760 | | 560 | | 770 | | | 300 | | 770 | | 570 | | 780 | | | 310 | | 780 | | 580 | | 790 | | | 320 | | 790 | | 590 | | 800 | | | 330 | | 800 | | 600 | | 810 | | | 340 | | 810 | | 610 | | 820 | | | 350 | | 820 | | 620 | | 830 | | | 360 | | 830 | | 630 | | 840 | | | 370 | | 840 | | 640 | | 850 | | | 380 | | 470 | | 650 | | 860 | | | 390 | | 480 | | 660 | | 870 | | | 400 | | 490 | | 670 | | 880 | | | 410 | | 500 | | 680 | | 890 | | | 420 | | 510 | | 690 | | 900 | | | 430 | | 520 | | 700 | | 910 | | | 440 | | 530 | | 710 | | 920 | | | 450 | | 540 | | 720 | | 930 | | | 460 | | 550 | | 730 | | 940 | | # **11. GRAPH** - 1. Tensile stress vs. strain curve of 40 Grade bar. - 2. Tensile stress vs. strain curve of 60 Grade bar. - 3. Tensile stress vs. strain curve of 72.5 Grade bar. - 4. Combined Tensile stress vs. strain curve of 40, 60 and 72.5 grade bar. - 5. Show all the points on the graphs 1, 2, and 3. # 12. RESULT (Students will fill up this section with their individual outcome/result about the test. Write the stress values in psi and MPa as shown in Table) | Properties | 40 grade steel | 60 grade steel | 72.5 grade steel (500W grade) | |--------------------------------------|----------------|----------------|-------------------------------| | E, psi (MPa) | | | (300 W grade) | | σ _p , psi (MPa) | | | | | ε_p , in/in (mm/mm) | | | | | σ _E , psi(MPa) | | | | | ϵ_{E} , in/in (mm/mm) | | | | | σ _y , psi(MPa) | | | | | ε _y , in/in (mm/mm) | | | | | σ _u , psi(MPa) | | | | | ϵ_u , in/in (mm/mm) | | | | | σ _b , psi(MPa) | | | | | ϵ_b , in/in (mm/mm) | | | | | Ductility ratio, σ_u/σ_y | | | | | % Elongation | | | | | TS/YS | | | | | EMF, in/in (mm/mm) | | | | | Failure pattern | | | | | Failure type | | | | # 13. DISCUSSION (Discuss on the results found, graphs, and failure patterns and also compare the results found, graphs and failure patterns.) Point out the discussion # 14. ASSIGNMENT - 1. Which type of steel have you tested? What is its carbon content? - 2. What general information is obtained from tensile test regarding the properties of a material? - 3. Which stress have you calculated: nominal/engineering stress or true stress? - 4. What kind of fracture has occurred in the tensile specimen and why? - 5. Which is the most ductile metal? How much is its elongation? # EXPERIMENT No. 5 # **DEFLECTION TEST ON SIMPLY SUPPORTED BEAM** **AIM:** Determine the deflection and bending stress of simply supported subjected to concentrated load at the center. # **APPARATUS:** Beam apparatus, Bending fixture, vernier caliper, meter rod, test piece & dial gauge. # **DIAGRAM:** # THEORY: Bending test is performing on beam by using the three point loading system. The bending fixture is supported on the platform of hydraulic cylinder of the UTM. The loading is held in the middle cross head. At a particular load the deflection at the center of the beam is determined by using a dial gauge. The deflection at the beam center is given by: $$\delta = \frac{WL^3}{48EI}$$ # **PROCEDURE:** - 1. Measure the length, width and thickness of test piece, by vernier caliper. - 2. Place the bending fixture on the lower cross head of the testing machine. - 3. Place the test piece on the rollers of the bending fixture. - 4. By loading the dial gauge in a stand, make its spindle knob the test piece. - 5. Start the m/c and note down the load and dial gauge readings. 6. Plot the graph between load and deflection. # **OBSERVATIONS:** - 1. Least count of vernier caliper = ----- - 2. Length of beam (L) = ---- - 3. Width of beam (b) = ---- - 4. Thickness of beam (t) = ---- # **TABLE:** | S.No | Load 'W'
in N | Deflection 'δ' in mm. | Young's Modulus 'E' $\frac{N}{mm^2}$ | |------|------------------|-----------------------|--------------------------------------| # **CALCULATIONS:** 1. $$I = \frac{b t^3}{12}$$ $$2. \quad \delta = \frac{WL^3}{48EI}$$ # **PRECAUTIONS:** - 1. The length of the simply supported should be measured properly. - 2. The dial gauge spindle knob should always touch the beam at the bottom of loading point. - 3. Loading hanger should be placed at known distance - 4. Al the errors should be eliminated while taking readings. - 5. Beam should be positioned horizontally. # **RESULT:** The Bending strength of given specimen = $----\frac{N}{mm^2}$ # **VIVA QUESTIONS** - 1. Types of beams. - 2. What is deflection? - 3. Write the equation for the Slope for a cantilever beam with point load - 4. Write the deflection equation for the simply supported beam with point load at the center - 5. How many types of bending are there? # **APPLICATIONS:** # 1. for construction of bridges Designation: C 496/C 496M − 04^{€1} # Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens¹ This standard is issued under the fixed designation C 496/C 496M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the Department of Defense. ϵ^1 Note—Footnote 3 was reinserted editorially to correct a typo in December 2006. # 1. Scope* - 1.1 This test method covers the determination of the splitting tensile strength of cylindrical concrete specimens, such as molded cylinders and drilled cores. - 1.2 The values stated in either inch-pound or SI units are to be regarded separately as standard. The SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. - 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 1.4 The text of this standard references notes that provide explanatory material. These notes shall not be considered as requirements of the standard. ### 2. Referenced Documents - 2.1 ASTM Standards: ² - C 31/C 31M Practice for Making and Curing Concrete Test Specimens in the Field - C 39/C 39M Test Method for Compressive Strength of Cylindrical Concrete Specimens - C 42/C 42M Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete - C 192/C 192M Practice for Making and Curing Concrete Test Specimens in the Laboratory - C 670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials ### 3. Summary of Test Method - 3.1 This test method consists of applying a diametral compressive force along the length of a cylindrical concrete specimen at a rate that is within a prescribed range until failure occurs. This loading induces tensile stresses on the plane containing the applied load and relatively high compressive stresses in the area immediately around the applied load. Tensile failure occurs rather than compressive failure because the areas of load application are in a state of triaxial compression, thereby allowing them to withstand much higher compressive stresses than would be indicated by a uniaxial compressive strength test result. - 3.2 Thin, plywood bearing strips are used to distribute the load applied along the length of the cylinder. - 3.3 The maximum load sustained by the specimen is divided by appropriate geometrical factors to obtain the splitting tensile strength. ## 4. Significance and Use - 4.1 Splitting tensile strength is generally greater than direct tensile strength and lower than flexural strength (modulus of rupture). - 4.2 Splitting tensile strength is used in the design of structural lightweight concrete members to evaluate the shear resistance provided by concrete and to determine the development length of reinforcement. ### 5. Apparatus - 5.1 Testing Machine—The testing machine shall conform to the requirements of Test Method C 39/C 39M and be of a type with sufficient capacity that will provide the rate of loading prescribed in 7.5. - 5.2 Supplementary Bearing Bar or Plate—If the diameter or the largest dimension of the upper bearing face or the lower bearing block is less than the length of the cylinder to be tested, a supplementary bearing bar or plate of machined steel shall be used. The surfaces of the bar or plate shall be machined to within \pm 0.001 in. [0.025 mm] of planeness, as measured on any line of contact of the bearing area. It shall have a width of at least 2 in. [50 mm], and a thickness not less than the distance ¹ This test method is under the jurisdiction of ASTM Committee C09 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.61 on Testing for Strength. Current edition approved Feb. 1, 2004. Published March 2004. Originally approved in 1962. Last previous edition approved in 1996 as C 496 – 96. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website. ^{*}A
Summary of Changes section appears at the end of this standard. from the edge of the spherical or rectangular bearing block to the end of the cylinder. The bar or plate shall be used in such manner that the load will be applied over the entire length of the specimen. 5.3 Bearing Strips—Two bearing strips of nominal ½ in. [3.2 mm] thick plywood, free of imperfections, approximately 1 in. [25 mm] wide, and of a length equal to, or slightly longer than, that of the specimen shall be provided for each specimen. The bearing strips shall be placed between the specimen and both the upper and lower bearing blocks of the testing machine or between the specimen and supplemental bars or plates, when used (see 5.2). Bearing strips shall not be reused. ### 6. Test Specimens 6.1 The test specimens shall conform to the size, molding, and curing requirements set forth in either Practice C 31/C 31M (field specimens) or Practice C 192/C 192M (laboratory specimens). Drilled cores shall conform to the size and moisture-conditioning requirements set forth in Test Method C 42/C 42M. Moist-cured specimens, during the period between their removal from the curing environment and testing, shall be kept moist by a wet burlap or blanket covering, and shall be tested in a moist condition as soon as practicable. 6.2 The following curing procedure shall be used for evaluations of light-weight concrete: specimens tested at 28 days shall be in an air-dry condition after 7 days moist curing followed by 21 days drying at 73.5 ± 3.5 °F [23.0 \pm 2.0°C] and 50 ± 5 % relative humidity. # 7. Procedure 7.1 Marking—Draw diametral lines on each end of the specimen using a suitable device that will ensure that they are in the same axial plane (see Fig. 1, Fig. 2 and Note 1), or as an alternative, use the aligning jig shown in Fig. 3 (Note 2). Note 1—Figs. 1 and 2 show a suitable device for drawing diametral lines on each end of a 6 in. by 12 in. [150 mm by 300 mm] cylinder in the same axial plane. The device consists of three parts as follows: - (1) A length of 4-in. [100-mm] steel channel, the flanges of which have been machined flat. - (2) A section, part a, that is grooved to fit smoothly over the flanges of the channel and that includes cap screws for positioning the vertical member of the assembly, and - (3) A vertical bar, part b, for guiding a pencil or marker, The assembly (part a and part b) is not fastened to the channel and is positioned at either end of the cylinder without disturbing the position of the specimen when marking the diametral lines. NOTE 2—Fig. 4 is a detailed drawing of the aligning jig shown in Fig. 3 for achieving the same purpose as marking the diametral lines. The device consists of: - (1) A base for holding the lower bearing strip and cylinder, - (2) A supplementary bearing bar conforming to the requirements in Section 5 as to critical dimensions and planeness, and - (3) Two uprights to serve for positioning the test cylinder, bearing strips, and supplementary bearing bar. - 7.2 Measurements—Determine the diameter of the test specimen to the nearest 0.01 in. [0.25 mm] by averaging three diameters measured near the ends and the middle of the specimen and lying in the plane containing the lines marked on the two ends. Determine the length of the specimen to the nearest 0.1 in. [2 mm] by averaging at least two length measurements taken in the plane containing the lines marked on the two ends. - 7.3 Positioning Using Marked Diametral Lines—Center one of the plywood strips along the center of the lower bearing block. Place the specimen on the plywood strip and align so that the lines marked on the ends of the specimen are vertical and centered over the plywood strip. Place a second plywood strip lengthwise on the cylinder, centered on the lines marked on the ends of the cylinder. Position the assembly to ensure the following conditions: FIG. 1 General Views of a Suitable Apparatus for Marking End Diameters Used for Alignment of Specimen in Testing Machine # € C 496/C 496M – 04^{€1} FIG. 2 Detailed Plans for a Suitable Apparatus for Marking End Diameters Used for Aligning the Specimen FIG. 3 Jig for Aligning Concrete Cylinder and Bearing Strips 7.3.1 The projection of the plane of the two lines marked on the ends of the specimen intersects the center of the upper bearing plate, and - 7.3.2 The supplementary bearing bar or plate, when used, and the center of the specimen are directly beneath the center of thrust of the spherical bearing block (see Fig. 5). - 7.4 Positioning by Use of Aligning Jig—Position the bearing strips, test cylinder, and supplementary bearing bar by means of the aligning jig as illustrated in Fig. 3 and center the jig so that the supplementary bearing bar and the center of the specimen are directly beneath the center of thrust of the spherical bearing block. - 7.5 Rate of Loading—Apply the load continuously and without shock, at a constant rate within the range 100 to 200 psi/min [0.7 to 1.4 MPa/min] splitting tensile stress until failure of the specimen (Note 3). Record the maximum applied load indicated by the testing machine at failure. Note the type of failure and the appearance of the concrete. Note 3—The relationship between splitting tensile stress and applied load is shown in Section 8. The required loading range in splitting tensile stress corresponds to applied total load in the range of 11 300 to 22 600 lbf [50 to 100 kN]/min for 6 by 12-in. [150 by 300-mm] cylinders. # € C 496/C 496M – 04^{€1} FIG. 4 Detailed Plans for a Suitable Aligning Jig for 6 by 12 in. [150 by 300 mm] Specimen FIG. 5 Specimen Positioned in a Testing Machine for Determination of Splitting Tensile Strength # 8. Calculation 8.1 Calculate the splitting tensile strength of the specimen as follows: $$T = 2P/\pi ld \tag{1}$$ where: T = splitting tensile strength, psi [MPa], P = maximum applied load indicated by the testing machine, lbf [N], l = length, in. [mm], and d = diameter, in. [mm]. # 9. Report - 9.1 Report the following information: - 9.1.1 Identification number, - 9.1.2 Diameter and length, in. [mm], - 9.1.3 Maximum load, lbf [N], - 9.1.4 Splitting tensile strength calculated to the nearest 5 psi [0.05 MPa], - 9.1.5 Estimated proportion of coarse aggregate fractured during test, - 9.1.6 Age of specimen, - 9.1.7 Curing history, - 9.1.8 Defects in specimen, - 9.1.9 Type of fracture, and - 9.1.10 Type of specimen. ## 10. Precision and Bias 10.1 *Precision*—An interlaboratory study of this test method has not been performed. Available research data,³ however, suggests that the within batch coefficient of variation is 5 % (see Note 4) for 6×12 -in. [150 \times 300-mm] cylindrical specimens with an average splitting tensile strength of 405 psi [2.8 MPa]. Results of two properly conducted tests on the same material, therefore, should not differ by more than 14 % (see Note 4) of their average for splitting tensile strengths of about 400 psi [2.8 MPa]. Note 4—These numbers represent, respectively, the (1s %) and (d2s %) limits as defined in Practice C 670. 10.2 *Bias*—The test method has no bias because the splitting tensile strength can be defined only in terms of this test method. # 11. Keywords 11.1 cylindrical concrete specimens; splitting tension; tensile strength ### SUMMARY OF CHANGES Committee C09 has identified the location of selected changes to this test method since the last issue, C 496 – 96, that may impact the use of this test method. (Approved February 1, 2004) - (1) Revised 1.2. - (2) Added 1.4. - (3) Revised 5.1, 6.1, Section 2, and Note 1 to correct references - (4) Revised 5.2, 6.2, 7.2, 7.5, 10.1, and Note 4 by metrication rules. - (5) Revised Section 4. - (6) Revised 3.2 and 5.3. - (7) Revised Note 2. - (8) Figs. 1, 2, and 4 were revised and redrawn. ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below. This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). ³ Wright, P. J. F., "Comments on an Indirect Tensile Test on Concrete Cylinders," Magazine of Concrete Research, Vol 7, No. 20, July 1955, pp. 87–95. # **REFERENCES** - 1. Dr. Ishtiaque Ahmed, Mechanics of Solids Sessional Manual, Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET). - 2. Md. Ruhul Amin, Mechanics of Solids Sessional Manual, Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET). - 3. ASTM E8 / E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org - 4. ASTM A370-17, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, 2017, www.astm.org - 5. ASTM A48 / A48M, Standard Specification for Gray Iron
Castings, ASTM International, West Conshohocken, PA, 2016, www.astm.org - ASTM E18, Standard Test Methods for Rockwell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2017, www.astm.org - 7. ASTM D143, Standard Test Methods for Small Clear Specimens of Timber, ASTM International, West Conshohocken, PA, 2000, www.astm.org - 8. ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, 2017, www.astm.org - 9. ASTM E 23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2017, www.astm.org